LQG Online Learning
نویسندگان
چکیده
Optimal control theory and machine learning techniques are combined to formulate and solve in closed form an optimal control formulation of online learning from supervised examples with regularization of the updates. The connections with the classical linear quadratic gaussian (LQG) optimal control problem, of which the proposed learning paradigm is a nontrivial variation as it involves random matrices, are investigated. The obtained optimal solutions are compared with the Kalman filter estimate of the parameter vector to be learned. It is shown that the proposed algorithm is less sensitive to outliers with respect to the Kalman estimate (thanks to the presence of the regularization term), thus providing smoother estimates with respect to time. The basic formulation of the proposed online learning framework refers to a discrete-time setting with a finite learning horizon and a linear model. Various extensions are investigated, including the infinite learning horizon and, via the so-called kernel trick, the case of nonlinear models.
منابع مشابه
Learning Algorithm for LQG Model With Constrained Control
The paper considers a discrete-time linear quadratic Gaussian model with constrained control. It is formulated with Markov systems. With the derivative equation, a performance gradient with respect to control parameters is estimated from a sample path. Then a learning algorithm is proposed to obtain a suboptimal feedback policy in affine linear form. The learning algorithm can be implemented on...
متن کاملKalman filter control in the reinforcement learning framework
There is a growing interest in using Kalman-filter models in brain modelling. In turn, it is of considerable importance to make Kalman-filters amenable for reinforcement learning. In the usual formulation of optimal control it is computed off-line by solving a backward recursion. In this technical note we show that slight modification of the linear-quadratic-Gaussian Kalman-filter model allows ...
متن کاملOn the synthesis of time-varying LQG weights and noises along optimal control and state trajectories
A general approach to control non-linear uncertain systems is to apply a pre-computed nominal optimal control, and use a pre-computed LQG compensator to generate control corrections from the on-line measured data. If the non-linear model, on which the optimal control and LQG compensator design is based, is of sufficient quality, and when the LQG compensator is designed appropriately, the closed...
متن کاملCorrelation between Online Learner Readiness with Psychological Distress related to e-Learning among Nursing and Midwifery Students during COVID-19 pandemic
Introduction: With the sudden shift of face-to-face education to e-learning during the COVID-19 pandemic, awareness of learnerschr('39') readiness for online learning and its impact on studentschr('39') psychological distress related to e-learning is important for teachers, counselors, and educational planners. Therefore, the present study was conducted to investigate the correlation between on...
متن کاملThe Effect of Online Learning Tools on L2 Reading Comprehension and Vocabulary Learning
The aim of this study was to investigate the effects of various online techniques (word reference, media, and vocabulary games) on reading comprehension as well as vocabulary comprehension and production. For this purpose, 60 language learners were selected and divided into three groups, and each group was randomly assigned to one of the treatment conditions. In the first session of tre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 29 8 شماره
صفحات -
تاریخ انتشار 2017